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Abstract

This paper is a preliminary report on the En-
tropy Reduction Engine architecture for in-
tegrating planning, scheduling, and control.
The architecture is motivated through a NASA
mission scenario and a brief list of design
goals. The main body of the paper presents
an overview of the Entropy Reduction Engine
architecture by describing its major compo-
nents, their interactions, and the way in which
these interacting components satisfy the design
goals.

1 Motivation

NASA has plans to send a rover to Mars sometime this
decade. Let's consider two extreme design scenarios for
such a mission.

In the first scenario, let's assume that in advance of
the rover's deployment, all relevant facts are known by
the design team; for example, soil surface characteris-
tics, surface topography, and location of all areas which
could be hazardous to the rover. With all this fore-

knowledge, the designers can specify desired rover be-
havior for all situations the rover will encounter. The

designers can produce a control system which enables
the rover to achieve all scientific goals under Martian
operating conditions.

Now consider a second scenario in which the design
team has limited foreknowledge of the relevant facts
needed to produce a rover control system. In this case,
the rover must be capable of performing, on Mars, some
of the activities that the designers could not complete
due to lack of knowledge. For example, since the pos-
sible situations and goals will be unknown to the de-
signers, the rover must be capable of determining, at
runtime, a response appropriate to a novel situation-
goal pair. This determination may involve synthesizing
a complex behavior and evaluating it before acting.

"This work has been partially supported by the Air Force
Office of Scientific Research, Artificial InteLligence Research
Program.

These two scenarios vary only in the amount of fore-
knowledge possed by the rover designers. Most realistic
mission scenarios will fall somewhere between these two
- some parameters will be known in advance, and it will
be necessary to determine some others at runtime. In
any scenario there is a role for automated tools that
reason about goals, that select actions relevant to those
goals, that schedule selected actions, and that do tem-
poral projection to determine possible consequences of
behaviors. These tools can be useful as knowledge com-
pilers in advance or as reactive systems at run time, or
both to some degree, depending on the designers' fore-
knowledge and other mission constraints. Our research
goal is to analyze, implement, and integrate such tools.
The Entropy P_eduction Engine (ERE) architecture is
our developing body of theory in this endeavor.

2 Design Goals

The primary design goal for ERE has been to integrate
planning (goal reasoning and action selection), schedul-
ing (action sequencing and resource allocation), and con-
trol (monitoring of and adapting to a dynaxnic environ-
ment). This overall goal can be decomposed into the
following design subgoals.

Manage goals with temporal extent. Standard
planning goals of simple conjunctive achievement axe not
particularly useful in realistic situations. We want to be
able to express behavioral constraints of maintenance
and prevention over intervals of time.

Schedule actions in terms of metric time and

metric resources. Most realistic applications for tools
which manage time and actions involve a significant
scheduling component. Planning and scheduling must
be functionally integrated.

Synthesize plans. Scheduling a predetermined set
of actions is not enough - many applications require that
the set of actions be selected automatically.

Act without plans. It is not always possible to
produce a plan for a problem in the time available. Un-
planned action must be possible.

Manage disjunctive plans. The system must be
able to represent and synthesize disjunctive plans. A



disjunctive plan is more robust; that is, it increases the
likelihood of successful execution.

Reason about parallel actions. Parallelism is rife
in realistic applications. Both possible and necessary
parallelism must be handled in terms of representation
and temporal projection capability.

Analyze plan execution as a control theory
problem. A reaction plan can be viewed as a specifica-
tion of how to react to a set of situation-goal pairs. Ver-
sions of this idea can be found in modern discrete event

control theory (Ramadge and Wonham, 1989). These
ideas from AI and control theory must be integrated
and extended.

Encode problem solving strategies when avail-
able. Problem solving strategies for a domain or set of
problems are often known by domain experts. We want
to capture and exploit such expert knowiedge so as to
make search more efficient when possible.

Plan while things are changing. The world wiU
often change while planning is going on. The plan for-
mation process must be able to deal with changing sit-
uations.

Plan synthesis must have anytime, incremen-
tal characterltics. It should be possible to stop a plan
synthesis algorithm at any time during its execution and
expect useful results. One should also expect the "qual-
ity" of the results to improve continuously as a function
of time. (Refer to Dean and Boddy, 1988 for more de-
tails.)

3 ERE Architecture Overview

This sectiongivesa guided tour of our architectureand
explainshow itaddresseseach of the previoussection's

designgoals.The ERE architectureincludesthe follow-
ing components.

I. The reactorproduces reactivebehavior in the envi-
ronment.

2. The projectorexplorespossiblefuturesand provides
advice about appropriatebehaviorsto the reactor.

3. The reduc_orreasons about behavioralconstraints

and providessearchcontroladvicetothe projector.

This architectureisorganized around the Principleof

Independent Ability, which is as follows: each component
must have the basic ability to perform its assigned task.
In no way does independent ability guarantee good per-
formance; in fact, a component in isolation will typically
exhibit poor performance and will improve only through
interactions with other components.

For a concrete example considerthe reactorand pro-

jectorcomponents. The reactorisable,in principle,to

realizeallthe behaviors that are possiblein a givendo-
main. However, without any advice,the reactorismy-

opic - itdoes not know the future consequences of its
behavior nor does itknow whether itsbehavior willsat-

isfythe given behavioralconstraints.The performance
levelofthe reactorisincreasedthroughinteractionswith

the projector. The projector considers consequences of
the various possible behaviors and advises the reactor
on which particular behavior best satisfies the given be-
havioral constraints.

The reductor-projector interface is similar. Forward
chronological search performed by the projector is in-
herently myopic; the projector does not have a "global
picture _ of the search space and as a result does not
know which behaviors to project and which others to

ignore. Of course projection can be done - it is just
not very efficient. The projector aspires to efficiency

by accepting search control guidance from the reductor.
The reductor uses domain-specific planning expertise to
recursively decompose the given problem into a conjunc-
tion of simpler (and more localized) subproblems. The
conjunction represents a strategy for solving the over-
all problem and is used to provide global advice to the
projector.

In both the projector-reactor and reductor-projector
interactions, the input from one component simply
serves to control an existing ability and does not serve to
define that ability. This approach differs from that taken
in classical "plan execution systems ". A traditional plan
executor (Wilkins, 1984) has nothing to do if it has no
plan. In contrast, our reactor can always do something:

the existence of a "plan _ simply serves to increase the
goal-achieving properties of the reactor. Similarly, the
projector can consider possible futures without reference
to some developing plan - search guidance from the re-
ductor serves to control the projection when such advice
is available, but such advice is not strictly necessary.

The principle of independent ability fits cleanly with
the idea of an anytime algorithm. By decoupling the sys-
tem into reduction, projection, and reaction, the ERE
architecture can exploit each component's anytime char-
acteristics. For example, the projector can give guidance
to the reactor once it has found a single behavior satis-
fying the given constraints, and can incrementaUy aug-
ment this guidance with descriptions of other satisfac-
tory behaviors as these are discovered in the projection.

The reductor has similar anytime characteristics. Ini-
tially, all behaviors which do not necessarily violate the
overall behavioral constraint are allowed according to
the reductor's first-cut problem solving strategy. Suc-
cessive applications of reduction operators serve to refine
the problem solving strategy providing search guidance
that grows increasingly detailed and accurate over time,
thus restricting the projector to ever fewer of the myriad
possible behaviors.

The following three sections explain, in more detail,
the functions of the ERE components and the nature of
their decoupled anytime interaction.

3.1 The Reactor

The reactor accepts a specification of the environment's
dynamics represented as a p/an net (Drummond, 1985,
1986). A plan net defines the events that are possible in
the environment in terms of each event's preconditions



and situation-dependent effects. Each event is repre-
sented by a single operator in the plan net. From the
point of view of the reactor, a plan net can be charac-
terized by a set of operators and the two functions given
below, where S is the domain's set of possible situations,
O is the set of plan net operators, and 1I(O) denotes the
power set of O (note that this is a slight simplification
of the full formalism explained in Drummond, 1989).

• ezeeutaney : 0 _ {true, false}

• e_bled : S _ n(n(O))

The function executancy distinguishes between ex-
ternal events and agent-based actions. That is,
executancy(o) indicates whether the reactor has con-
trol over the execution of the action denoted by operator
o or whether o denotes an event whose occurrence is de-

termined by the environment.
The function enabled(s) returns a set of operator

sets in the plan net, where each of the operator sets
returned can be performed in parallel in situation s. The
reactor is only concerned with those operators that are
enabled according to its current "world model _. It needs
to find a set of operators enabled in its world model
for which it has executancy. The reactor interprets the
plan net as a nondeterministic program, choosing and
executing possible actions in an undefined order.

Control over the execution process is achieved by the

use of Situated Control Rules, or SCRs (Drummond,
1989). An SCR is an if-then rule, where the antecedent
refers to elements of the reactor's current world model

and the current behavioral constraint, and where the
consequent contains a set of possible operator sets to
execute. Essentially, the consequent of an SCR for a
situation s and behavioral constraint B contains those

operator sets whose execution defines a prefix to a be-
havior which satisfies B. This means that the SCR's

consequent is a subset of enabled(s), since the op-
erators that satisfy posted behavioral constraints will
include some (but typically not all) of those operators
that are enabled in s. The synthesis of these SCRs is
discussed in more detail in Drummond (1989), and the
next section provides a brief overview of the process.

The reactor always checks to see if any SCRs exist
that are appropriate to the current situation and given
behavioral constraints. If so, the SCRs' advice about
what to do next is heeded. If there are no appropri-
ate SCRs, unplanned execution is still possible. With-
out reference to the SCR input from the projector, the
reactor simply selects and attempts to execute any en-
abled operator in the plan net. The results of such non-
deterministic execution are (of course) unpredictable.

For the fully autonomous extreme of the rover ex-
ample considered in section 1, the plan net given to
the reactor would contain a specification of all actions
the rover could perform, as well as all relevant exter-
nal events which could affect the success of the rover's

mission. For instance, an action for the rover could be
aim-laser-range-finder, and an external event could

be rock-slips-from-gripper. A background set of
SCRs would be provided to give the rover essential reac-

tions to situations demanding immediate response (e.g.,
those needed for self-preservation). Other SCRs can be
synthesized dynamically by the projector.

3.2 The Projector

The projection process considers the effects of events

under the system's control and external events caused
by the environment or other agents (cf Dean and Mc-
Dermott, 1987). Projection is simply a search through
the space of possible event sequences. A projection path
represents a possible behavior. Considering all possible
future behaviors is typically impossible.

The projector needs to view the plan net as a causal
theory and so requires the following extra function which
describes the effects of a set of operators o in a situation
s. The function is defined Vo C_ O, s E S.

apply(o, s) = I s' E S if o E enabled(s)undefined otherwise

Projection associates a duration with each set of op-
erators applied and uses this to calculate a time stamp
for each new situation. Currently, operator durations
are integers and can be a function of the situation in
which the operators are applied; situation time stamps
are also integers.

Behavioral constraints are conjunctions and disjunc-
tions of the following two forms.

* (rnaintain_ktl t2) is true of a projection path iff wit
_b is true from time point tl through time point t2
in the path.

• (prevent q_tl t2) is true of a projection path iff wff
is false from time point tx through time point t2

in the path.

A wit is a conjunction or disjunction of grounded pred-
icates. Time points refer to situational time stamps and
can be integers or variables; the domain of each variable
is the integers. Arithmetic constraints on time point
variables are allowed in the language. This language
might appear quite simple but it allows us to express
behavioral constraints that are more complicated than
most planning systems can handle.

For example, the language allows the following:
(and (maintain (memory 3 6) 1 8)

(prevent (battery low) 2 7)

(maintain (image taken) ?t ?t))

where (memory 3 6) indicatesinour roverdomain that

theamount ofmemory availableisbetween threeand six
megabytes, (battery low) indicatesthe battery'ssta-

tus,and (image taken) istruewhen a picturefrom the

rover'scamera has been taken. This constraintrequires
that the firstpredicatebe true from time I through time
5 and that the second predicate be true from time 2

through time 7. The third conjunct in the constraint
corresponds to a traditional goal of achievement, where
the predicate must be true at an arbitrary but single
point in time, here indicated by the variable ?t.



Our approach calls for two phases of temporal projec-
tion. First, we find a single projection path that satisfies
all given constraints. The search method used is based

on likelihood (how probable is a candidate partial path;
c/Hanks, 1990) and utility (how well does a candidate

partial path satisfy the given constraints). The projec-
tion path is compiled into SCRs, giving the reactor a
single correct behavior. The result of this first phase

is somewhat like a triangle table (Niisson, 1984) insofar
as the reactor has information regarding what to do for
any situation in a defined sequence. Our second phase of
operation attempts to make this first solution more ro-
bust by strengthening probabilistlcal]y "weak" sections

of the behavior. This two-phase approach gives the SCR
synthesis anytime characteristics; details are explained
by Drummond and Bresina (1990).

For a projection example let's look to our ongoing
Mars rover scenario. There are limited resources on

board, and given goals will often compete for these re-
sources (e.g., the goals of obtaining a sample and of en-
suring rover safety). Provided that an appropriate plan
net and behavioral constraints are given to the on-board
executive system, competing possible behaviors can be
considered in terms of their likelihood and the degree
to which each satisfies the given constraints. Projection
will produce appropriate $C1ts to be used by the reactor
when the relevant situations arise.

The initial behavioral constraints will rarely pro-
vide enough control over the temporal projection search
due to their scope: behavioral constraints are typically
global, and temporal projection, while it eventually con-
structs a behavior with this global scope, does so in-
crementMly through a series of single operator applica-
tions. Our problem of search control in this context is
not new. All _goal-oriented" systems require a mecha-
nism that can translate a computationally non-effective
goal into a computationally effective means for control-
ling the search for a solution which satisfies the goal.

We expect the reductor to translate "global non-
effective" behavioral constraints into ones that are "lo-

cal" and "computationally-effective s to control tempo-
ral projection. The basic idea behind this translatlon
process is the topic of the next section.

3.3 The Reductor

Standard problem reduction operates by applying non-
terminal reduction rules to recursively decompose prob-
lems (situation-goal pairs) into conjunctions of "sim-
pler _ subproblems until "primitive s problems are rec-
ognized by terminal reduction rules which return their
"obvious" solutions (Nilsson, 1971). A complete reduc-
tion trace is represented as an And tree whose root node
represents the initial problem and whose leaves represent
solved subproblems. The trace of a search through the
reduction space is represented as an And/Or graph.

The ERE reductor is based on the REAPPR system

(Bresins, 1988; Breslna, et al., 1987) which extends this
standard approach in a number of ways. I_EAPPR en-

sbles the encoding and effective utilization of domain
specific and problem specific planning expertise. In or-
der to fulfill its role in the ElSE architecture, ltEAPPR
is undergoing customizations and extensions.

In the ERE context, a problem is a pair consisting
of a situation and a behavioral constraint. Nonterminal

reductions can decompose a behavioral constraint based
on its logical structure, its temporal extent, the logical
structure of its formulae, or the semantics associated
with the formulae's predicates.

For instance, in terms of the fully autonomous rover
scenario, if a behavioral constraint requires that the dis-
tance to a nearby rock be precisely determined, then
there might be two reductions giving more detailed be-

havioral constraints regarding how exactly this might
be achieved. One reduction might specify that two vis-
ible light cameras should be used in conjunction with
a calculation of binocular disparity; the other reduction
might specify that the laser range finder should be used.
The two alternative strategies have different costs and
the reductions will indicate the situations under which

each is appropriate.

The semantics of a nonterminal reduction is that satis-

fying the conjunction of behavioral constraints specified
in the decomposition implies satisfaction of the original
behavioral constraint. Furthermore, a nonterminal re-
duction represents the heuristic advice that satisfying
the conjunctive subproblems is a good strategy for satis-
fying the original problem. By induction, given a par-
tial reduction And tree, the set of leaf nodes represents
a conjunction of subproblems whose satisfaction implies
the satisfaction of the root node problem.

In accord with the standard approach, a terminal re-
duction applicable to a subproblem would return an ac-
tion which is enabled in the subproblem's situation and
satisfies the subproblem's behavioral constraints. An-
other use of terminal reductions is suggested by the fol-
lowing observation. Once a robust solution for a sub-
problem has been found by the projector and compiled
into a set of SCRs, the projector no longer needs guid-
ance from the reductor on solving subsequent occur-
rences of that particular subproblem. Hence, terminal
reductions can be formed to recognize subproblerns cov-
ered by existing SCILs, so the reductor will not waste
time reasoning about them.

As the tree grows, the leaf subproblems become sim-
pler and more localised; furthermore, they represent an
increasingly accurate strategy for satisfying the initial
problem. Hence, over time, the conjunctive set of leaf
subproblems makes it increasingly easy to estimate the
quality of a partial behavior in the projection and to
estimate the likelihood that it can be extended to sat-

isfy the overall constraints. The limit of this advice is a
complete specification of all behaviors which satisfy the
overall constraints. This limit is approached as more
terminal reductions are applied.



4 Conclusion

We have implemented a temporal projection system

based on the ideas outlined in this paper and have begun
experiments in a domain loosely based around our au-
tonomous Mars Rover scenario. This domain, The Reac-
tive Tile World, involves uncontrollable external events
and the need to act before planning is complete. Behav-
ioral constraints in the Reactive TileWorld are complex,
typically involving the maintenance of conjunctions of
predicates over intervals of time. We have implemented
a subset of the goal language defined in this paper; in
our language subset, if a variable is used to refer to
the time points in a maintain or prevent statement,
the same variable must be used for both the start point
and end point. We have implemented the SCR compila-
tion code defined in a previous paper (Drummond, 1989)
and are currently developing a set of l_eactive TileWorld
benchmark experiments. The REAPPR system is being
integrated with our temporal projection code.

How does our evolving architecture measure up in
terms of our declared design goals? The architecture al-
lows us to schedule actions in terms of metric time and

metric resources by considering the situation-dependent
effects of actions during projection. It also allows for
synthesizing plans by selecting actions, for acting with-
out plans, and for the management of disjunctive plans.
The ERE architecture also supports reasoning about
parallel actions in temporal projection. The reduc-
tor makes it possible to encode domain- and problem-
specific strategies when such knowledge is available. All
the components of our architecture have incremental,
anytime properties. And what of our goal to plan while
things are changing? We're working towards that by
developing notions of situational coverage and overall
system robustness in an effort to connect our work with
modern discrete event control theory. Results will be re-
ported in a forthcoming paper (Drummond and Bresina,
1990).
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